Răspuns:
Explicație pas cu pas:
3√5/2√3 = 3√5·√3/(2√3·√3) = 3√15/6 = √15/2
------------------
2√6/3√2 = 2√(6:2)/3 = 2√3/3
sau
2√6/3√2 = 2√6·√2/(3·2) = 2·2·√3/6 = 2√3/3
---------------------
-7√15/√20 = I:√5 = -7√3/√4 = -7√3/2
sau
-7√15/√20 = -7√15·√5/√(20·5) = -7·5·√3/10 = -7√3/2
---------------------
8√15/√20 = I:√5 = 8√3/2 = 4√3
sau
8√15/√20 = 8√15·√5/√(20·5) = 8·5·√3/10 = 8√3/2 = 4√3
----------------------
√35/√125 = I:√5 = √7/5
sau
√35/√125 = √35·√5/√625 = 5·√7/25 = √7/5
-----------------------
√21/√63 = I:√21 = 1/√3 = √3/3
sau
√21/√63 = √21·√7/√(63·7) = 7√3/21 = √3/3
-----------------------
√6/2√2 = I:√2 = √3/2
sau
√6/2√2 = √6·√2/4 = 2√3/4 = √3/2
--------------------------
varianta 1 = varianta simplificata
varianta 2 = varianta cu rationalizare