Răspuns:
E(x) = (13 - 5x)/(2x + 10) + (x - 1)/(1 - x^2) + (x - 3)/(x^2 + 6x + 5)
Dacă simplificăm această expresie, obținem:
E(x) = (13 - 5x)/(2x + 10) + (x - 1)/(-(x + 1)(x - 1)) + (x - 3)/((x + 1)(x + 5))
Vom continua simplificarea:
E(x) = (13 - 5x)/(2x + 10) - 1/(x + 1) + (x - 3)/((x + 1)(x + 5))
E(x) = (13 - 5x - 2(x + 5))/(2x + 10) + (x - 3)/((x + 1)(x + 5))
E(x) = (13 - 5x - 2x - 10)/(2x + 10) + (x - 3)/((x + 1)(x + 5))
E(x) = (3 - 7x)/(2x + 10) + (x - 3)/((x + 1)(x + 5))
E(x) = (3 - 7x + 2(x - 3))/((x + 1)(x + 5))
E(x) = (3 - 7x + 2x - 6)/((x + 1)(x + 5))
E(x) = (-3 - 5x)/((x + 1)(x + 5))