[tex]I = \displaystyle \int_{1}^e \Big(x+\frac{1}{x}\Big)\ln x\, dx= \int_{1}^e\dfrac{1}{x}\Big(x^2+1\Big)\ln x\, dx \\ \\ \ln x = t \Rightarrow \dfrac{1}{x}\, dx = dt \\ x = e^t \\ \\ x = 1 \Rightarrow t = 0,\quad x = e \Rightarrow t = 1 \\ \\ I = \int_{0}^1(e^{2t}+1)t\, dt = \dfrac{1}{2}\int_{0}^1(e^{2t})'t\, dt+\int_{0}^1 t\, dt = \\ \\\\ = \dfrac{e^{2t}t}{2}\Big|_0^1-\dfrac{1}{2}\int e^{2t}\, dt+\dfrac{t^2}{2}\Big|_0^1 =[/tex]
[tex]= \dfrac{e^2}{2}-\dfrac{1}{2\cdot 2}\cdot e^{2t}\Big|_{0}^1+\dfrac{1}{2} = \dfrac{e^2}{2}-\dfrac{e^2}{4}+\dfrac{1}{4}+\dfrac{1}{2} = \boxed{\dfrac{e^2+3}{4}}[/tex]