Răspuns:
x=2
Explicație pas cu pas:
[tex]C_{n} ^{n}+C_{n} ^{n-1}+C_{n} ^{n-2}=22, \frac{n!}{n!*0!}+\frac{n!}{(n-1)!*1!}+\frac{n!}{(n-2)!2!}=22\\1+n+\frac{n(n-1)}{2}=22, 2+2n+n(n-1)=44, n^{2}+n=42, n(n+1)=6*7, deci n=6\\[/tex]
[tex]T_{3}+T_{5}=135\\[/tex]
[tex]T_{3}=T_{2+1}=C_{6}^{2}*(\sqrt{2^{x} })^{4}*(\sqrt{2^{1-x} })^{2} =15*2^{x+1}\\T_{5}=T_{4+1}=C_{6}^{4}*(\sqrt{2^{x} })^{2}*(\sqrt{2^{1-x} })^{4} =15*2^{2-x}\\Deci 15*2^{x+1}+15*2^{2-x}=135 , 2^{x+1}+2^{2-x}=9, 2*2^{x}+\frac{4}{2^{x}} =9, 2*(2^{x})^{2}-9*2^{x}+4=0\\ x=-1 sau x=2[/tex]