Răspuns :
Răspuns:
Explicație pas cu pas:
Se poate vedea ca 7 + 7^2 + 7^3= 7 (1+7+7^2) = 7*57 = 7*3*19
7^4 + 7^5 + 7^6 = 7^4 (1+7+7^2) = 7^4 + 57 = 7^4*3*19
Cum suma are 2010 termeni (2010:3 = 670), acestia pot fi grupati cate trei, ca dand factor comun, sa obtinem de fiecare data un multiplu de 19, si suma multiplilor de 19 este tot un multiplu de 19 :)
n = (7+7^2+7^3) + (7^4+7^5+7^6) + .... + (7^2008+7^2009+7^2010) =
7*(1+7+7^2) + 7^4*(1+7+7^2) + .... + 7^2008 (1+7+7^2) = 3*19 *(7+7^4+....+7^2008)
deci numarul n este divizibil cu 19
n = 7 + 7² + 7³ + .. + 7²⁰⁰⁸ + 7²⁰⁰⁹ + 7²⁰¹⁰
= 7·(1 + 7 + 7²) + .. + 7²⁰⁰⁸·(1 + 7 + 7²)
= 7·(1 + 7 + 49) + .. + 7²⁰⁰⁸·(1 + 7 + 49)
= 7·57 + .. + 7²⁰⁰⁸·57
= 57·(7 + .. + 7²⁰⁰⁸)
= 3·19·(7 + .. + 7²⁰⁰⁸) ⋮ 19
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Sperăm că resursele disponibile v-au fost de ajutor. Pentru întrebări sau asistență suplimentară, nu ezitați să ne contactați. Ne bucurăm să vă revedem în curând și vă invităm să ne salvați în lista de site-uri preferate!